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Abstract

The gastrointestinal tract provides a physical barrier to the diffusion of foreign materials from the lumen into the circulatory system. Impairment of the
intercellular tight junction (TJ) shield, which is the major determinant of intestinal barrier function, is associated with various diseases. Dietary flavonoids
demonstrate various beneficial effects on our health; however, the information regarding their effects on TJ function is quite limited. To date, four flavonoids —
epigallocatechin gallate (EGCG), genistein, myricetin and quercetin — have been reported to exhibit promotive and protective effects on intestinal TJ barrier
functions. Genistein, a major soybean isoflavone, protects TJ barrier function against oxidative stress, acetaldehyde, enteric bacteria and inflammatory cytokines.
Genistein blocks the tyrosine phosphorylation of the TJ proteins induced by oxidative stress and acetaldehyde, which results in the disassembly of the proteins
from the junctional complex. Quercetin, a flavonol, enhances intestinal TJ barrier function through the assembly and expression of TJ proteins. The change in
phosphorylation status is responsible for the quercetin-mediated assembly of TJ proteins. TJ protein induction has an additional role in this effect. This review
presents the recent advances in our understanding of the flavonoid-mediated promotive and protective effects on intestinal TJ barrier function with a particular
focus on intracellular molecular mechanisms.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

One of themost important functions of gastrointestinal epithelium
is to provide a physical barrier to the diffusion of pathogens, toxins
and antigens from the luminal environment into the circulatory
system. The intestinal barrier is determined by interactions among
several barrier components including the adhesive mucous gel layer,
the mucosal immune system and the tight junctions (TJs) [1]. Among
these components, the intercellular TJs constitute the major deter-
minant of the intestinal physical barrier (Fig. 1). TJs are multiple-
protein complexes located around the apical end of the lateral
membrane of the epithelial cells and regulate the paracellular
movement of ions, solutes and water through the intestinal
epithelium. Four integral transmembrane proteins, occludin [2],
claudins [3], junctional adhesion molecule (JAM) [4] and tricellulin
[5], have been identified, with the claudin family consisting of at least
24 members [6]. These transmembrane proteins interact with
intracellular plaque proteins, such as zonula occludens (ZO) and
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cingluin, which in turn anchor the transmembrane proteins to the
perijunctional actin cytoskeleton. The interaction of TJ proteins with
the actin cytoskeleton is vital for maintaining TJ structure and
function [6]. Numerous studies have reported that TJ protein
expression and association with the actin cytoskeleton, which
determines TJ permeability, were dynamically regulated by various
intracellular signaling molecules, such as protein kinases [7,8],
protein phosphatases [9,10] and phosphatidylinositol 3-kinase [11].

A significant body of evidence has demonstrated that intestinal
barrier defects are involved in several intestinal and metabolic
diseases, such as inflammatory bowel disease [12], food allergies
[13], obesity [14] and alcoholic liver disease [15]. In these diseases,
inflammatory cytokines [16,17], reactive oxygen species [11,18] and
pathogenic bacteria [19,20] have been found to impair intestinal TJ
function. These mediators influence not only the expression but also
the cytoskeletal association of TJ proteins through the activation/
inactivation of intracellular signaling. However, the causal relation-
ships between these diseases and barrier defects, and also the
precise mechanisms underlying the barrier defects remain to be
fully established.

A large number of studies have reported that various food
components provided beneficial anti-inflammatory and anti-muta-
genic effects in the intestines. Although the information regarding
these effects on intestinal TJ barrier function is quite limited, some
results for glutamine [21,22], fatty acids [23–25] and flavonoids are
available. The role of glutamine, which is the primary metabolic fuel
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Fig. 1. Intestinal epithelial TJs as a physical barrier. The intestinal TJs tightly regulate intestinal paracellular permeability. The barrier impairment induced by extracellular stimuli, such
as inflammatory cytokines and reactive oxygens, allows the lumina bacterial products and dietary antigens to cross the epithelium and enter circulation. This can induce inflammation
and immunological reactions in tissues including the intestines, resulting in both intestinal and nonintestinal diseases.
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of the small intestinal cells, in intestinal TJ barrier function has been
extensively investigated. In vivo studies showed that glutamine helps
maintain intestinal mucosal integrity, especially during stress, such as
radiation therapy [26], chemotherapy [27] and total parenteral
nutrition [28]. Furthermore, Li et al. [21] reported that glutamine
stabilized TJ integrity by the maintenance of TJ protein expression
through the suppression of the phosphatidylinositol 3-kinase/Akt
pathway in human intestinal Caco-2 cells. Seth et al. [22] reported
that glutamine ameliorated the acetaldehyde-induced TJ dysfunction
through the activation of epidermal growth factor-receptor tyrosine
kinase in the Caco-2 cells. These results suggest that glutamine and
the other food components mentioned above play a role in the
regulation of intestinal barrier function and some may have potential
applications to the prevention and treatment of diseases associated
with intestinal barrier impairment.

This review focuses on flavonoids from the above-mentioned food
components and summarizes the protective and promotive effects of
flavonoids, especially genistein and quercetin, on intestinal TJ barrier
function, with particular emphasis on the intracellular signaling
pathways and behavior of TJ proteins involved in the flavonoid-
mediated effects on intestinal TJ function.

2. Intestinal absorption and metabolism of dietary flavonoids

Flavonoids, polyphenolic compounds containing diphenylpropans
(C6C3C6), are secondary metabolites ubiquitously distributed
throughout the plant kingdom. They are classified into six major
categories: isoflavones, anthocyanidins, flavones, flavonols, flavan-3-
ols and flavonones, and more than 4000 different molecules have
been identified to date. The chemical structures of the flavonoids
presented in this review [genistein, quercetin, myricetin and
epigallocatechin gallate (EGCG)] are shown in Fig. 2. The major
sources of flavonoids in the human diet are fruits, vegetables and
beverages, such as tea and coffee, and the majority of flavonoids are
present as glycosides in which one or more sugar groups are bound to
the phenolic groups through glycosidic linkage, although a small
proportion is present as aglycones. In order to understand the
physiological effects of flavonoids, it is important to take into account
their intestinal absorption and metabolism.

Flavonoid absorption from the intestine occurs by several different
pathways. Flavonoid aglycones can be easily absorbed into the
intestinal cells as their lipophilicity facilitates the passage across the
mucosal phospholipid bilayer of cells. Lactase phlorizin hydrolase
(LPH), which is expressed on the brush bordermembrane of the small
intestinal epithelium, has a crucial role in the absorption of flavonoids
bearing β-glycoside linkages. Day et al. [29] demonstrated that LPH
was capable of hydrolyzing various flavonoid glycosides, such as
quercetin-4′-glucoside, quercetin-3-glucoside, genistein-7-glucoside
and daidzein-7-glucoside, to form aglycones.

On the other hand, flavonoid monoglucosides can be transported
by sodium glucose transporter-1 (SGLT-1) [30] on the brush border
membrane of the intestinal cells. Wolffram et al. [31] demonstrated
that SGLT-1 was involved in the uptake of quercetin-3-glucoside in
rat small intestinal cells. Most flavonoid glycosides entering the
enterocytes are deglycosylated by β-glucosidases, namely, the
broad-specificity cytosolic β-glucosidase [32]. The flavonoids appear
to be subjected to glucuronidation, sulfation and methylation in
the intestinal epithelial cells before entering circulation [33–35],
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Fig. 2. Chemical structures of flavonoids, genistein, quercetin, myricetin and EGCG.
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although the extent of the conversion seems to be lower in
isoflavones and catechins than in the other flavonoids [36,37]. The
flavonoid conjugates then gain access into hepatocytes where they
are further methylated, glucuronidated or sulfated [38,39]. These
flavonoid conjugates are excreted into the urine and also into bile
fluid, thereby returning to the intestinal lumen [40]. Once there,
they may again be reabsorbed by the intestinal cells, mainly in the
large intestine. Meanwhile, significant amounts of dietary flavo-
noids reach the large intestine, because the absorption rate of the
flavonoids in the small intestine is typically low. The intestinal
microbes have high levels of β-glucosidase and β-glucuronidase
activity [41–43], and the glycosylated and/or conjugated flavonoids
are quickly hydrolyzed to aglycones or methylated forms by the
enzymatic activity in the large intestine. Matsukawa et al. [44]
showed that only quercetin and monomethylated quercetin (iso-
rhamnetin and tamarixetin) were detected in the cecal contents
and feces of rats fed quercetin-3-glucoside.

Consequently, specific forms of the flavonoids are present in the
small and large intestines and plasma, and each of them can produce
distinct biological effects on the intestinal epithelial cells.

3. Roles of flavonoids for intestinal barrier function

3.1. Genistein

Much attention has been given to the physiological effects of
genistein, one of the major isoflavones found in soybeans.
Genistein is naturally present as a glycoside, genistin. Genistein
has been often used in studies related to signal transduction as it
is a potent inhibitor of protein tyrosine kinases. A large number
of studies have demonstrated that the phosphorylation status of
TJ proteins was closely related to TJ structure and function
[9,45,46]. Occludin is known to undergo tyrosine phosphorylation
during the disruption of TJs by various factors [18,47–49],
although the tyrosine phosphorylation of TJ proteins is not
detectable in the intact intestinal epithelium. Genistein protects
TJ barrier function mainly through the above-mentioned inhibition
of protein tyrosine kinases.

Genistein is reported to ameliorate intestinal TJ barrier dysfunc-
tion induced by oxidative stress. Rao et al. [18] demonstrated that
oxidative stress induced by the administration of a mixture of
xanthine oxidase and xanthine, which generates superoxide anions
in the culture media, decreased the transepithelial electrical
resistance (TER) and increased [3H]-mannitol flux, indicators of TJ
permeability, in 3 h in human intestinal Caco-2 cells. These changes
were prevented by the co-administration of genistein (300 μM). The
oxidative stress-induced TJ dysfunction was involved in the tyrosine
phosphorylation of TJ proteins, such as occludin and ZO-1, along
with that of adherence junction (AJ) proteins, such as E-cadherin,
resulting in their disassembly from the junctional complex. The
tyrosine phosphorylation is regulated by the balance between
phosphorylation by protein tyrosine kinases, such as c-Src kinase,
and dephosphorylation by phosphatases, such as protein tyrosine
phosphatase (PTP). The oxidative stress induced a rapid activation
of c-Src kinase, resulting in the tyrosine phosphorylation of TJ and
AJ proteins [50]. Genistein appears to suppress this oxidative stress-
induced c-Src kinase activation, thereby protecting TJ barrier
function against oxidative stress.
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Fig. 3. Promotive effect of quercetin on intestinal TJ barrier function. Human intestinal
Caco-2 cells were incubated with or without 10–100 μM quercetin for 48 h in a
Transwell culture system. Lucifer yellow flux (A) across the cell monolayers was
evaluated for the last 3 h of incubation, and TER (B) was measured before and at 0.5, 1,
3, 6, 12, 24 and 48 h. Values are means±S.E.M., n=4. Values not sharing a common
letter differ significantly, Pb.05 (A). Asterisks indicate a significant difference from the
values before quercetin administration, Pb.05 (B).
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Fig. 4. Effect of quercetin on the expression and cytoskeletal association of TJ proteins.
Human intestinal Caco-2 cells were incubated with or without 100 μM quercetin for 48
h in a Transwell culture system. Whole cell extracts (A) and the actin cytoskeleton
fraction (detergent-insoluble fraction) (B) were prepared before and at 1, 3, 6, 12, 24
and 48 h, and immunoblotted for TJ proteins, ZO-1, ZO-2, occludin, JAM-1, claudin-1,
claudin-3 and claudin-4. Each specific protein band was quantified by densitometric
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no differences were found in the other proteins. Values are means±S.E.M., n=4.
Asterisks indicate a significant difference from the values before quercetin adminis-
tration, Pb.05.
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Genistein has also been reported to protect intestinal TJ barrier
function from acetaldehyde-induced insult [51,52]. A significant body
of evidence suggests that endotoxemia plays a crucial role in the
pathogenesis of alcoholic liver disease [53]. One of the possible
mechanisms underlying endotoxemia is the luminal acetaldehyde-
induced disruption of intestinal TJ barrier structure [54]. It is reported
that luminal acetaldehyde is derived from ethanol oxidation by
colonic bacterial fermentation [55], and the intracolonic acetaldehyde
level in men consuming alcohol reaches as high as 1 mM [56]. Recent
studies showed that acetaldehyde (0.1–0.8 mM) disrupted the
intestinal TJ barrier in a tyrosine protein kinase-dependent mecha-
nism [51,52,57]. Acetaldehyde did not increase the overall tyrosine
kinase activities, but potently inhibited PTP-1B, -C and -D in the
intestinal Caco-2 cells [51]. The inhibition of PTPs by acetaldehyde
induced the tyrosine phosphorylation of TJ and AJ proteins and
increased paracellular permeability within hours, as indicated by an
increase in [3H]-mannitol flux and a decrease in TER. Genistein (30–
300 μM) dose-dependently blocked the acetaldehyde-induced intes-
tinal permeability [51]. Confocal immunofluorescence microscopy
also showed that the acetaldehyde-induced tyrosine phosphorylation
in the junctional region and the dissociation of the TJ proteins, ZO-1
and occludin, were blocked by genistein.
Furthermore, it is reported that genistein ameliorates the
impairment of intestinal TJ barrier function by inflammatory
cytokines [58] and enteric bacteria [59]. Serosal administration of
tumor necrosis factor-α, an inflammatory cytokine, in colonic
epithelial HT-29/B6 cells decreased the TER at 8 h to approximately
20% of the initial value, although this decrease was completely
blocked by the administration of 185 μMgenistein [58]. Genistein also
blocked decreases in TER induced by Salmonella typhimurium and
Escherichia coli in Caco-2 cells [59]. However, the precise mechanisms
underlying the genistein-mediated protective effects remain unclear.
3.2. Quercetin

Quercetin, a flavonol, is found in high levels in vegetables and
fruits such as onions and apples, and is one of the most abundant
flavonoids in foods. The intestinal TJ permeability of rats fed the
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Fig. 6. Possible involvement of occludin phosphorylation in the quercetin-induced
assembly. Human intestinal Caco-2 cells were incubated with or without 100 μM
quercetin for 48 h in a Transwell culture system. Whole-cell extracts and actin
cytoskeleton fractions of cells were prepared before and at 1, 3, 6, 12, 24 and 48 h, and
immunoblotted for occludin. Occludin showed double bands in the immunoblots, with
the higher band corresponding to the hyper-phosphorylated form of occludin. Each
band was quantified by densitometric analysis. The total expression (sum of the lower
and higher bands) and the ratio of the hyper-phosphorylated form to total expression
were calculated. Values are means±S.E.M., n=4. Asterisks indicate a significant
difference from the values before quercetin administration, Pb.05.
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quercetin-containing diet (∼1.0%) for 9 days was examined using an
Ussing chamber system. Both the small and large intestines of rats fed
the quercetin diets showed dose-dependent decreases in lucifer
yellow (LY) flux (personal observation). Treatment of intestinal Caco-
2 cells with quercetin (∼100 μM) for 48 h also decreased the LY flux
(Fig. 3A) and increased the TER across the monolayers in a dose-
dependent manner [60]. The TER began to increase within 0.5 h of the
administration of 100 μM quercetin and markedly increased over the
first 6 h (Fig. 3B). Thereafter, the TER decreased until 24 h before again
gradually increasing between 24 and 48 h. At the same time, total
protein expression of claudin-4, but not the other TJ proteins,
continuously increased from 12 h after quercetin treatment
(Fig. 4A) [60]. Another research group has reported, on the basis of
reporter gene assays in Caco-2 cells, that quercetin stimulates
claudin-4 promoter activity, indicating that quercetin enhanced the
claudin-4 expression at a transcriptional level [61]. Furthermore, the
cytoskeletal association of ZO-2, occludin and claudin-1 was promot-
ed during the first 6 h after quercetin administration, although the
association of claudin-4 remained at increased levels at and after 12 h
(Fig. 4B) [60]. These results show that the promotion of ZO-2, occludin
and claudin-1 assembly is responsible for the quercetin-mediated
increase in TER in the early phase in the first 6 h, and the stimulation
of claudin-4 expression has an additional role in the increases in TER
observed in the later phase.

This raises the question as to what signaling molecules are
involved in the quercetin-mediated enhancement of the intestinal TJ
barrier function. Recently, the cellular biological effects of flavonoids
are believed to be mediated through the interaction with signaling
molecules, such as protein kinases, rather than through the
antioxidant properties of the flavonoids. Among several signaling
inhibitors, a selective protein kinase C δ (PKCδ) inhibitor was found to
exhibit a promotive effect on the TJ barrier function in a very similar
manner to that of quercetin, i.e., by promoting the cytoskeletal
association of ZO-2, occludin and claudin-1, as well as total claudin-4
expression [60]. The PKCδ activity in Caco-2 cells began to decrease
within 1 h of quercetin administration and reached 60% of the initial
activity at 24 h (Fig. 5A) [60]. Furthermore, an in vitro kinase assay
showed the direct inhibition of PKCδ by quercetin and revealed that
the quercetin concentration required for the 50% inhibition of PKCδ
was as low as 3.7 μM (Fig. 5B) [60]. Taken together, these results show
that the quercetin-mediated promotion of intestinal TJ barrier
function occurs via the inhibition of the PKCδ isoform.

Although the precise mechanism underlying the quercetin-
mediated promotion of TJ protein assembly and expression remains
unclear, it is clear that quercetin induced the phosphorylation of
occludin in the Caco-2 cells concomitantly with the assembly of the
TJs. Occludin phosphorylation was estimated bymigration in the SDS-
PAGE to be enhanced within 1 h of quercetin administration, and
the enhancement was closely associated with the occludin assembly
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(Fig. 6). Several reports demonstrate that the assembly and
disassembly of TJs are involved in the phosphorylation of occludin
on Ser, Thr and Tyr residues. In the Caco-2 cells, occludin undergoes
dephosphorylation on Thr residues during TJ disassembly under
calcium-depleted conditions and is rephosphorylated by calcium
replacement [8,10,45]. Several protein kinases, such as PKCζ [9], PKCη
[8] and casein kinase I/II [62], and protein phosphatases, such as PP1
and PP2A [9,10], have been identified as taking part in occludin
phosphorylation and dephosphorylation. It seems that quercetin
affects the activities of these kinases or phosphatases through PKCδ
inhibition, resulting in the promotion of occludin phosphorylation
and TJ assembly.

3.3. Other flavonoids

Myricetin, one of the flavonols found in grapes and tea, exhibits a
promotive effect on intestinal TJ barrier function in Caco-2 cells [60].
Cells incubated with 10–100 μM myricetin for 48 h showed a dose-
dependent decrease in LY flux; however, no changes in the
Fig. 7. Diagrams showing themolecular mechanisms underlying the flavonoid-mediated effects
oxidative stress and acetaldehyde. Oxidative stress and acetaldehyde induce tyrosine phosphor
impairment. Genistein normalizes the tyrosine phosphorylation of TJ proteins by inhibiting p
integrity through PKCδ inhibition. Quercetin promotes total claudin-4 expression and the as
levels. The promotion of claudin-4 expression by quercetin is induced at a transcriptional leve
possibly involved in the phosphorylation of occludin on Ser or Thr residues.
cytoskeletal association or expression of TJ proteins were observed.
This evidence confirms that the promotive effects of quercetin and
myricetin are not associated with their antioxidant activities, because
quercetin promotes TJ barrier function more effectively than does
myricetin, whereas myricetin has higher antioxidant activity than
does quercetin due to an additional hydroxy group on the B-ring.

A green tea flavonoid, EGCG, was found to ameliorate the
intestinal TJ barrier dysfunction provoked by interferon (IFN) γ
[63]. Human intestinal T84 cells exposed to IFNγ (20 ng/ml) for 48
h showed a decrease in TER and an increase in horseradish peroxidase
flux. The mucosal administration of EGCG (100 μM) completely
reversed these changes. However, the molecular mechanisms
underlying these EGCG-mediated effects remain unclear.

4. Physiological implications and relevance of the
flavonoid-mediated effects on intestinal barrier function

Information on the flavonoid-mediated promotive effects on
intestinal TJ barrier function in humans is completely lacking. To
on intestinal TJ barrier function. Genistein protects intestinal TJ barrier function against
ylation of TJ proteins through c-Src kinase activation or PTP inhibition leading to barrier
rotein tyrosine kinases including c-Src kinase. Quercetin enhances intestinal TJ barrier
sembly of ZO-2, occludin and claudin-1 without any changes in their total expression
l leading to an increase in assembly. The quercetin-induced occludin assembly is then

image of Fig. 7
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play a role in humans, effective concentrations of flavonoids are
required in the plasma or intestinal lumen. The daily intake of
flavonoids in humans is reportedly 20–50 mg for isoflavones, 20–35
mg for flavonols [64–66] and 18–50 mg for catechins [67], and it has
been shown that the plasma concentrations of total flavonoid
derivatives range from 0 to 4 μM at an intake level of 50 mg
aglycone equivalents [68]. These concentrations seem too low to
exhibit any promotive or protective effects on intestinal TJ barrier
function such as that shown by quercetin at concentrations of N30
μM in the Caco-2 cells [60]. On the other hand, the luminal
concentrations of flavonoids are known to be much higher than
those in plasma because of the low intestinal absorption rate,
although accurate data is not available in humans. Previous studies
show that the quercetin derivative concentrations in the ileal and
cecal lumens were found to be ∼30 and ∼4.2 mmol/kg wet content
of rats fed 100 mg quercetin aglycone equivalents as diet [44,69]. On
the basis of these results, it is calculated that a luminal quercetin
concentration of N40 μM can be achievable at an intake level of 1 mg
quercetin in rats, and an intake of 1 mg quercetin in rats may
correspond to approximately 20 mg in humans, based on daily
calorie intakes. Collectively, the promotive and protective effects of
flavonoids on intestinal TJ barrier function observed in animals and
cell culture models could be translated to humans.

Flavonoid aglycones have been used in most of the experiments
presented in this review. Aglycones are definitely present throughout
the intestinal lumen even when flavonoid glycosides are ingested
[44,70]. However, the effects of glycosylated, conjugated and/or
methylated flavonoids on intestinal TJ barrier function should be
examined in future studies as they are also distributed in the lumen,
show different biological properties and may have different roles
from those of aglycones.

The TJs have crucial roles in paracellular nutrient transport as well
as in barrier function in the intestines. The paracellular route largely
contributes to the transport and absorption of certain minerals, such
as calcium [71] and magnesium [72]. The modification of TJ structure
and function by flavonoids may influence the paracellular absorption
of these nutrients. To confirm their safety for human consumption,
the effects of flavonoids on the absorption of these nutrients along
with TJ barrier function should be examined in future studies.
Meanwhile, these minerals are also known to be absorbed by the
active transcellular pathway in the intestine [71,72]. The contribution
of each pathway depends on the dietary level of the minerals, and
transcellular transport is generally more tightly regulated than is
paracellular transport. It is reported that lower calcium intake up-
regulates the transient receptor potential vanilloid family 6 (TRPV6)
calcium channel and calbindin D9k, which are responsible for
transcellular calcium transport, in the intestine [73]. Thus, transcel-
lular transport may compensate for changes in the paracellular
transport of these nutrients. Furthermore, there has been no data
reported to date showing any signs of physical or physiological
problems induced by the prolonged feeding of flavonoids in animal or
human studies.

5. Conclusion

To date, only four flavonoids — genistein, quercetin, myricetin
and EGCG — have been reported to show protective and promotive
effects on intestinal TJ barrier function. Genistein and quercetin
interact with intracellular signaling molecules, tyrosine kinases and
PKCδ, resulting in the regulation of TJ protein expression and
assembly (summarized in Fig. 7). As it is known that TJ barrier
defects are involved in several diseases, such as inflammatory bowel
disease, dietary supplementation with flavonoids might afford an
effective tool for the prevention and treatment of those diseases.
Future investigations are required to elucidate the precise mechan-
isms underlying these flavonoid-mediated protective and promotive
effects on intestinal TJ barrier function.
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